Sains Malaysiana 53(9)(2024): 2085-2098
http://doi.org/10.17576/jsm-2024-5309-06
Penyuaian Model Analisis Penyampulan Data: Bukti Empirik daripada Institusi Wakaf
(Data Envelopment Analysis Model Fitness:
Empirical Evidence from Waqf Institutions)
NURUL
HIDAYAH MD RAZALI1, RUBAYAH YAKOB1, ZAIDI ISA2,* & MOHD HAFIZUDDIN SYAH BANGAAN ABDULLAH1
1Fakulti Ekonomi & Pengurusan, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 7 May 2024/Accepted: 5 July 2024
Abstrak
Analisis Penyampulan Data (APD) ialah kaedah analisis bukan parametrik yang boleh menghitung skor kecekapan dengan mempertimbangkan input dan
output. Model APD telah melalui beberapa semakan sejak awal diperkenalkan oleh Farrell pada tahun 1957. Model awal, yang dikenali sebagai Model CCR, telah diperkenalkan oleh Charnes, Cooper dan Rhodes pada tahun 1978. Ini diikuti oleh Model BCC, dibangunkan oleh Bankers, Charnes, dan Cooper pada tahun 1984. Dari masa ke masa, APD telah berkembang menjadi model yang lebih rumit yang dikenali sebagai APD Dinamik. Contohnya, Model TT,
yang diasaskan oleh Tone dan Tsutsui pada tahun 2010. Penggunaan Model TT memfokuskan kepada pengiraan kecekapan yang mengambil kira kesinambungan aktiviti bawaan atau peralihan. Oleh itu, objektif kajian ini adalah untuk menentukan model APD yang paling sesuai untuk mengukur kecekapan. Tiga model APD yang diuji ialah BCC, CCR dan TT. Data kajian merangkumi data
input dan output institusi wakaf di Malaysia yang merangkumi tahun 2014 hingga 2021.
Bagi Model BCC dan CCR, 4 data input digunakan terdiri daripada perbelanjaan kutipan dana, perbelanjaan gaji kakitangan, perbelanjaan operasi dan kutipan dana wakaf tunai. Manakala 2 data output merangkumi nilai projek wakaf dan keuntungan pelaburan dana wakaf tunai. Berbeza dengan Model TT yang mempunyai tambahan data baharu menerusi aktiviti bawaan atau peralihan iaitu kutipan dana wakaf tunai. Keputusan kajian menunjukkan Model BCC mengatasi dua model lain. Penemuan ini mengukuhkan dan mempertingkatkan kedudukan Model BCC sebagai APD termaju yang menggabungkan andaian yang lebih tepat melalui Pulangan Berubah Mengikut Skala. Penemuan kajian dijangka menawarkan pandangan yang berharga kepada ahli akademik, menunjukkan bahawa model berasaskan andaian yang lebih realistik mempunyai kesan yang lebih besar, menggambarkan kecekapan sebenar dengan tepat dan mendedahkan kesinambungan aktiviti bawaan atau peralihan yang tidak membantu dalam memberikan skor kecekapan yang lebih tinggi. Tambahan pula, adalah penting untuk mengakui kepentingan menggabungkan Model
BCC dengan model lain sebagai penanda aras perbandingan dalam mana-mana kajian yang berkaitan dengan APD.
Kata kunci: Analisis Penyampulan Data; BCC;
CCR; dinamik; model; wakaf
Abstract
The Data Envelopment Analysis (DEA) is a non-parametric analysis method
that can compute efficiency scores by considering inputs and outputs. DEA model
has undergone several revisions since its initial introduction by Farrell in
1957. The initial model, known as the CCR Model, was introduced by Charnes,
Cooper and Rhodes in 1978. This was followed by the BCC Model, developed by
Bankers, Charnes and Cooper in 1984. Over time, DEA has evolved into a more
intricate model called Dynamic DEA. An example of this is the TT Model, founded
by Tone and Tsutsui in 2010. The use of the TT Model focuses on the measurement
of efficiency that takes into account the continuity of carry-over activities.
Hence, the objective of this study was to determine the DEA model that most
appropriate quantifies efficiency. The three DEA models that were tested are
BCC, CCR, and TT. The study data encompasses the input and output data of waqf
institutions in Malaysia spanning the years 2014 to 2021. For the BCC and CCR
Models, 4 input data are used consisting of fundraising expenses, staff salary
expenses, operational expenses and cash waqf fund collection. Meanwhile, 2
output data includes the value of waqf projects and the investment profit of
cash waqf funds. Different from the TT Model which has additional new data
through carry-over activities which are the collection of cash waqf funds. The
study findings indicate that the BCC Model outperforms the other two models.
These findings both reinforces and enhances the position of the BCC Model as an
advanced DEA that incorporates more accurate assumptions through Variable
Returns to Scale (VRS). The findings are anticipated to offer valuable insights
to academics, indicating that models grounded in more realistic assumptions
have a greater impact, accurately depict actual efficiency and show the
carry-over activities that do not help provide higher efficiency scores.
Furthermore, it is crucial to acknowledge the significance of incorporating the
BCC Model with other models as a comparative benchmark in any study related to
DEA.
Keywords: BCC; CCR; Data Envelopment Analysis; dynamic; model; waqf
REFERENCES
Afzalinejad, M. & Abbasi, Z. 2019. A slacks-based model for dynamic data
envelopment analysis. Journal of
Industrial & Management Optimization 15(1): 275-291.
Aghimien, P.A., Kamarudin, F. &
Hamid, M.B.N. 2016. Efficiency of Gulf cooperation council banks. Review of
International Business and Strategy 26(1): 118-136.
Avkiran, N.K. 1999. The evidence on efficiency gains: The role of mergers and
the benefits to the public. Journal of Banking and Finance 23(7):
991-1013.
Bandyopadhyay, T., Bobst, D., Hummel, T. & Kondova, G. 2018. Swiss cantonal banks: A DEA efficiency
and productivity analysis. Universal Journal of Accounting and Finance 6(2): 21-28.
Banker, R.D., Charnes, A. &
Cooper, W.W. 1984. Some models for the estimating technical and scale
efficiencies in Data Envelopment Analysis. Management
Science 30(9): 1078-1092.
Benston, G. 1965. Branch banking and economies of
scale. Journal of Finance 20(2): 312-331.
Berber, P., Brockett, P.L., Cooper, W.W., Golden, L.L. & Barnett, R.P. 2011. Efficiency in
fundraising and distributions to cause-related social profit enterprises. Socio-Economic Planning Sciences 45(1):
1-9.
Boussofiane, A.,
Dyson, R. & Thanassoulis, E. 1991. Applied data
envelopment analysis. European Journal of Operational Research 52: 1-15.
Charnes, A., Cooper, W.W. & Rhodes, E. 1978. Measuring the efficiency
of decision making units. European
Journal of Operational Research 2: 429-444.
Charnes, A., Cooper, W.W.,
Lewin, A.Y. & Seiford, L.M. 1994. Data Envelopment Analysis: Theory,
Methodology and Application. Boston: Kluwer Academic Publishers.
Coelli, T.J. 1995. Recent developments in frontier modeling and efficiency measurement. Australian Journal of Agricultural Economics 39: 219-245.
Coelli, T.J., Rao,
D.S.P., O’Donnell, C.J. & Battese, G.E. 2005. An Introduction to Efficiency and
Productivity Analysis. New York: Springer.
Cooper, W.W., Seiford, L.M. & Tone, K. 2002. Data Envelopment Analysis: A
Comprehensive Text with Models, Application, References and DEA-Solver Software,
Netherlands: Kluwer Academic Publishers.
Dahlia, I. & Haslindar,
I. 2020. Governance, location, size and waqf efficiency in Malaysia. International Journal of Academic Research
in Business and Social Sciences 10(10): 589-612.
Debreu, G. 1951. The coefficient of resource utilization. Econometrica 19: 273-292.
Despotis, D.K., Sotiros, D. & Koronakos,
G. 2023. Data Envelopment Analysis of two‐stage processes: An alternative
(non‐conventional) approach. International Transactions in Operational
Research https://doi.org/10.1111/itor.13320
dos Santos, J.P.A., da Silva Júnior, L.H. & Nunes,
A. 2022. Efficiency in Brazilian Federal Universities: A study with Data
Envelopment Analysis (DEA). Desenvolvimento Em Questão 20(58):
e12286.
Dyson, R., Allen, R., Camanho, A., Podinovski, V. & Sarrico, C.
2001 Pitfalls and protocols in DEA. European Journal of Operational Research 132: 245-259.
Fahmy-Abdullah, M. & Basri, A.B. 2018. Data
Envelopment Analysis (DEA) approach in efficiency transport manufacturing
industry in Malaysia. International Journal of Engineering &
Technology 7(3.20): 339-343.
Fahmy-Abdullah, M., Lai, W.S. & Sulhi, R. 2019. Analisis penyampulan data (DEA) dua peringkat dalam mengenal pasti faktor penentu kecekapan teknik firma pembuatan pengangkutan. Sains Malaysiana 48(4):
901-908.
Färe, R. & Grosskopf, S. 1996. Intertemporal Production Frontier: With
Dynamic DEA. Norwell: Kluwer.
Farrell, M.J. 1957. The measurement of productive
efficiency. Journal of the Royal
Statistical Society 120(3): 253-290.
Golany, B. & Roll, Y. 1989.
An application procedure for DEA. Omega 17(3): 237-250.
Golden, L.L., Brockett, P.L., Betak, J.F., Smith, K.H. & William, W.C.
2012. Efficiency metrics for nonprofit marketing/fundraising and service
provision–A DEA Analysis. Journal of
Management and Marketing Research 10(1): 1-25.
Gupta, S. 2022. Dynamic DEA model using window analysis approach with
weight modeling. Journal of Scientific Research of
the Banaras Hindu University 66(04): 100-106.
Hazriah, H. &
Ismail, A. 2014. The efficiency of waqf collection and distribution of Malaysia State of Islamic Religion Councils
(SIRCs): A two-stage analysis. Recent Developments in Data Envelopment
Analysis and its Applications 11(39): 410-437.
Hazriah, H., Nur Farahiah, A., Nik Noorhazila, N.M. & Ismail, A. 2020. Waqf efficiency: CRS, VRS and Malmquist total factor productivity index
via Data Envelopment Analysis (DEA). International Journal of Innovation,
Creativity and Change 10(10): 71-83.
Herindar, E. & Rusydiana, A.S. 2022. The measuring efficiency of waqf
fund. Al-Awqaf: Jurnal Wakaf dan Ekonomi Islam 14(2):
107-122.
Hussain, H.I., Kot, S.,
Kamarudin, F. & Lim, H.Y. 2020. Impact of rule of law and government size
to the microfinance efficiency. Economic Research 34(1): 1870-1895.
Ifa Hanifia, S. & Winwin, Y. 2021. Strategy to improve the potential waqf
asset management in Indonesia: Efficiency approach. Jurnal ASET 13(2): 274-283.
Iskandar Putri, F. 2022. Performance of waqf fund
efficiency managed by zakat institutions in Indonesia. International
Journal of Waqf 2(1). https://doi.org/10.58968/ijf.v2i1.149
Jaafar, P., Hazriah, H.
& Ismail, A. 2016. Modernizing waqf performance evaluation by waqf management efficiency index. Asia-Pacific Management Accounting Journal 11(2): 1-7.
Jaloudi, M.M. 2019.
The efficiency of Jordan insurance companies and its determinants using DEA,
slacks, and logit models. Journal of Asian Business and Economic Studies 26(1): 153-166.
Juliana, J., Munadiyah, R., Rasida, R., Mahri,
A.J.W. & Awaluddin, R. 2022. Efficiency of
Private Waqf Institutions in Indonesia: Data Envelopment Analysis. https://www.bwi.go.id/8020/2022/05/25/efficiency-of-private-waqf-institutions-in-indonesia-data-envelopment-analysis-bw
ps-no-2-2022/ (Diakses pada 25 Julai 2023).
Kahraman, C. & Toga, E. 1998. Data Envelopment Analysis using fuzzy
concept.
https://pdfs.semanticscholar.org/7de0/51fc521f3f7f647d8fc355280d56b1726102.pdf (Diakses pada 14 April 2023).
Khanmohammadi, M. & Kazemimanesh, M. 2020.
Ranking of efficiency in context-dependent Data Envelopment Analysis with
non-discretionary data. International Journal of Industrial Mathematics 12(2): 197-207.
Kim, H. & Lee, C.W. 2018. Efficiency analysis
for nonprofit organizations using
DEA: Focused on humanitarian assistance organizations in South Korea. Asia Pacific Journal of Innovation and
Entrepreneurship 12(2): 165-180.
Koopmans, T. 1951. Analysis of production as an
efficient combination of activities. Activity
Analysis of Production and Allocation. New York: John Wiley & Sons.
Li, H. & Dong, S. 2015. Measuring and benchmarking
technical efficiency of public hospitals in Tianjin, China. Inquiry 52: 0046958015605487.
Liang, W., Guo, H., Yin, R., Ren, G., Gan, L. & Chen, Q. 2022.
Modelling and simulation of laser active imaging system based on APD
detector. Thirteenth International Conference on Information Optics and
Photonics (CIOP 2022) 12478: 644-649.
Liu, H., Zhang, Z., Tao, Z. & Wang, L. 2020.
Revisiting China’s provincial energy efficiency and its influencing factors. Energy 208: 118361-118371.
Luksetich, W.
& Hughes, P. 1997. Efficiency of fundraising activities: An application of
Data Envelopment Analysis. Nonprofit and Voluntary Sector Quarterly 26(1): 73-84.
Mariz, F.B.A.R., Almeida, M.R. & Aloise, D. 2018. A review of Dynamic
Data Envelopment Analysis: State of the art and applications. International
Transactions in Operational Research 25: 1-37.
Martič, M.M., Novakovič, M.S.
& Baggia, A. 2009. Data Envelopment Analysis -
Basic models and their utilization. Organizacija 42(2): 37-43.
Medina-Borja, A. & Triantis, K. 2007. A conceptual framework to
evaluate performance of non-profit social service organisations. International
Journal of Technology Management 37(1/2): 147-161.
Mehdi, S., Hamid, S., Farhad, H.L., Witold, P. & Tofigh, A. 2023. Introduction to Data Envelopment
Analysis. Preferential Voting and Applications: Approaches
Based on Data Envelopment Analysis. Berlin: Springer International
Publishing AG.
Mirmozaffari, M., Yazdani, R., Shadkam, E.,
Tavassoli, L.S. & Massah, R. 2021. VCS and CVS: New combined parametric and
non-parametric operation research models. Sustainable Operations and
Computers 2: 36-56.
Misbahrudin, N.A.
2019. Evaluating efficiency of waqf institutions: An intermediation approach
using Data Envelopment Analysis (DEA). Journal
of Accounting Research, Organization and Economics 2(2): 82-89.
Mohamad Anwar, N.A., Iqbal Hussain, H., Kamarudin, F., Sufian, F., Zainal, N. & Wong, C.M. 2021. Impact of regulatory efficiency and
market openness to social and financial efficiency: Empirical evidence from
microfinance institutions. Society and Business Review 16(3):
374-397.
Motevally, D. & Hossein, M. 2017. Data Envelopment Analysis from
simulation on the Lattice QCD using CCR model. Iranian Journal of
Optimization 9(1): 57-68.
Nemoto, J. & Goto, M. 1999. Dynamic data
envelopment analysis: Modeling intertemporal behavior of a firm in the presence
of productive inefficiencies. Economics
Letters 64(1): 51-56.
Niu, H., Zhang, Z., Xiao, Y., Luo, M. & Chen, Y. 2022. A Study of
Carbon Emission Efficiency in Chinese Provinces Based on A Three-Stage
SBM-undesirable Model and An LSTM Model. International Journal of
Environmental Research and Public Health 19(9): 5395.
Nunamaker, T.R. 1985. Using Data Envelopment Analysis to measure the efficiency
of non-profit organization: A critical evaluation. Managerial and Decision Economics 6(1): 50-58.
Nurul Azma, A.B. 2018. Pengurusan wakaf di Malaysia: Kajian dari sudut struktur organisasi dan prestasi. Tesis Dr. Fal, Othman Yeop Abdullah Graduate School of Business, Universiti Utara Malaysia (Tidak diterbitkan).
Obadire, A.M., Moyo, V. & Munzhelele, N.F. 2022. Basel III capital regulations and
bank efficiency: Evidence from selected African Countries. International
Journal of Financial Studies 10(3): 57.
Pedraja-Chaparro, F., Salinas-Jiménez, J. & Smith, P. 1999. On the
quality of the Data Envelopment Analysis model. Journal of the
Operational Research Society 50(6): 636-644.
Peixoto, M.G.M., Mendonça, M.C.A., Musetti, M.A.,
Batalha, M.O. & Sproesser, R.L. 2017. Grain
intermodal terminals: Evaluation of pure technical efficiency by Data
Envelopment Analysis. Production 27: e20162054.
Rödder, W. & Reucher, E. 2012. Advanced X-efficiencies for CCR-and
BCC-models–towards peer-based DEA controlling. European Journal of
Operational Research 219(2): 467-476.
Rusydiana, A.S., Sukmana, R. & Laila, N. 2022. Measuring the
efficiency of waqf fund in Indonesia. Journal of Islamic Monetary
Economics and Finance 29(8): 153-174.
Sealey, C.W. & Lindley, J.T. 1977. Inputs, outputs
and a theory of production and cost at depository financial institutions. The
Journal of Finance 32(8): 1251-1266.
Seiford, L.M. 1996. Data
Envelopment Analysis: The evolution of the state of the art (1978–1995). Journal
of Productivity Analysis 7: 99-137.
Senjiati, I.H. & Yadiati, W.
2021. Strategy to improve the potential waqf asset management in Indonesia:
Efficiency approach. Jurnal ASET 13(2): 274-283.
Siti Razifah, K. & Marhanum,
C.M.S. 2018. Study on the efficiency of cash waqf management in Malaysia. Journal of Islamic Monetary Economics and
Finance 4(1): 61-84.
Suryani, M. & Adawiyah, N.N. 2017. Cash waqf performance in
Indonesia:
Empirical Analyses on Islamic Social
Entrepreneurship Model. http://nida_n_adawiyah.staff.gunadarma.ac.id/Publications/files/3813/Cash+Waqf+Performance+In+Indonesia+Empirical+ Analyses+on+Islamic+Social+Entrepreneurship+Model.pdf (Diakses pada 26 Mac 2024).
Toloo, M., Keshavarz, E. & Hatami-Marbini, A. 2021. Selecting data envelopment
analysis models: A data-driven application to EU countries. Omega 101:
102248-102279.
Tone, K. & Tsutsui, M. 2014. Dynamic DEA with
network structure: A slacks-based measure approach. Omega 42(1):
124-131.
Tone, K. & Tsutsui, M. 2010. Dynamic DEA: A
slacks-based measure approach. Omega 38(4): 145-156.
Tsai, M.C., Cheng, C.H., Nguyen, V.T. & Tsai, M.I.
2020. The theoretical relationship between the CCR model and the two-stage DEA
model with an application in the efficiency analysis of the financial
industry. Symmetry 12(5): 712-731.
Valdmanis, V. 1992. Sensitivity analysis for DEA models: An empirical
example using public vs. NFP hospitals. Journal of Public Economics 48(2):
185-205.
Widiastuti, T. &
Wahyuningsih. 2018. Waqf productive efficiency: Evidence from Yayasan Badan
Wakaf Sultan Agung, Semarang. Advances in
Social Science, Education and Humanities Research 98(8): 178-185.
Zou, W.J., Huang, C.W., Chiu, Y.H., Shen, N. & Wang, S.M. 2016. The
Dynamic DEA assessment of the intertemporal efficiency and optimal quantity of
patent for China’s High-Tech Industry. Asian
Journal of Technology Innovation 24(3):
378-395.
Zýková, P. 2021. The overall efficiency of the dynamic DEA
models. Central European Journal of Operations Research 30(2):
495-506.
*Corresponding author; email: zaidiisa@ukm.edu.my
|